
12/18/96 1996 Progressive Networks, Inc. All rights reserved. 1

Specifications for Building a Transparent
Firewall Proxy to Support RealAudio Player

Introduction

This document provides information to allow firewall developers to support the RealAudio Player-Server
communications. The information is provided for the sole purpose of designing firewall software which
supports RealAudio systems.

There are two types of firewall proxies that can be built to support RealAudio, Transparent and Application-
Level.

Transparent Proxy Firewalls
A Transparent Proxy Firewall operates by monitoring network traffic and only letting through connections
matching certain protocols. The Transparent Firewall relies on knowing details of all protocols it will
support. Transparent proxies can perform their function without the client or server applications being
modified or configured. This document provides specifications for building this type of firewall proxy.

Firewall

RealAudio
Client

RealAudio
Server

Proxy

 Server Port

Proxy “transparently”
examines data between
Client and Server.

Client has no
knowledge of
Proxy.

Figure 1 - Transparent Firewall

Application-Level Proxy Firewalls
Unlike a Transparent Proxy Firewall, an Application-Level Proxy firewall relies on the application inside
the firewall having knowledge of the firewall proxy. All connections are made to the Proxy with the proxy
then connecting to the desired external host. This means that an Application-Level Proxy needs to know
about the client application connecting and what its Proxy protocol is, but does not need to know about the
low level protocol details. For information on how to build an Application-Level Proxy, please refer to the
document entitled, Specifications for Building an Application-Level Firewall Proxy to Support RealAudio.

Firewall

RealAudio
Client

RealAudio
Server

Proxy

 Server Port

 Proxy Port

Proxy transfers
data between
client and
Server.

Client has
hostname and
port address for
Proxy.

Figure 2 - Application-Level Proxy

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 2

RealAudio Communications

RealAudio Client / Server Communications
A RealAudio Client (Player) can use one of three methods for communicating with a RealAudio Server:
• Standard UDP
• Robust UDP
• TCP-Only

Standard UDP
The RealAudio Client (Player) sets up two network connections with the RealAudio Server, as shown in
Figure 3. A full-duplex TCP connection is used for control and negotiation. A simplex UDP path from the
RealAudio Server to the Player is used for audio data delivery. By using UDP for the audio, the RealAudio
Server and Player can handle error correction instead of relying on the transport protocol. This allows a
RealAudio Server to provide a better Audio stream when packet loss occurs.

Real Audio
Server

 Port 7070TCP - Control
Connection

UDP
Data Connection

Real Audio
Player

Figure 3 - RealAudio Client / Server Communications : Standard UDP Mode

Robust UDP
The RealAudio Client (Player) sets up three network connections with the RealAudio Server, as shown in
Figure 4. A full-duplex TCP connection is used for control and negotiation. A simplex UDP path from the
RealAudio Server to the Player is used for audio data delivery. A second simplex UDP path from the Client
to the Server is used to request that the Server resend lost UDP audio data packets.

Real Audio
Server

 Port 7070
TCP - Control
Connection

UDP
Data Connection

Real Audio
Player

UDP
Resend Requests

Figure 4 - RealAudio Client / Server Communications : Robust UDP Mode

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 3

TCP-Only
In TCP-Only mode, a single full-duplex TCP connection is used for both control and for audio data delivery
from the RealAudio Server to the Player, as shown in Figure 5. The standard TCP connection port on a
RealAudio Server is 7070.

Real Audio
Server

 Port 7070TCP - Control and
Data Connection

Real Audio
Player

Figure 5 -RealAudio Client / Server Communications : TCP-Only Mode

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 4

Real Audio and Firewalls
A Transparent Proxy requires no explicit support in either the RealAudio Player or RealAudio Server. The
Proxy must know about the protocol being used between the Player and Server, but no actual connection is
made to the Proxy by either the Player or Server.

A Transparent Proxy, shown in Figure 6, must be able to detect and modify port requests being sent between
the Player and the Server. Working at the packet level, the Proxy must capture, scan and modify TCP
control messages. Unlike Application-Level Proxies, Transparent Proxies do not require the end user to
configure the Player for the Proxy. Transparent Proxies can support RealAudio 1.0, 2.0, and 3.0 Players.

Firewall

RealAudio
Player

RealAudio
Server

RealAudio
Proxy

UDP Data Connection UDP Data Connection

TCP - Control Connection

TCP - Control Connection

Port 7070

Proxy Port

UDP Resend Requests UDP Resend Requests

Figure 6 - RealAudio Transparent Proxy

Transparent Proxy Handshaking
Transparent Proxies, if built to the following specifications, will support RealAudio 1.0, 2.0, and 3.0
Players. The interactions between the Player and the Server are described in general terms below including
schematic diagrams that show the progression of messages and actions in the interaction. The connections
from prior steps in the diagrams are grayed out in subsequent steps where they are not an active part of that
step. All descriptions of messages refer to structured RealAudio Proxy Protocol messages. These messages
are defined in Table-2 RealAudio Handshake Protocol, that follows this sample description.

Handshake and Communications Description
1. The Proxy listens on its defined TCP port, PPPORT (standard is port 7070). The RealAudio Server is

outside the firewall and is passively listening on TCP port RAPORT (standard is port 7070), for any
incoming connections.

ProxyPlayer Server

Step 1

The Proxy listens on
TCP port PPPORT

PPPORT RAPORT

The Server listens on
TCP port RAPORT

2. When the Player attempts an active TCP connect to the RealAudio Server by sending the string “PNA”
(hex = 504e41) followed by the protocol version number (a two byte integer). All numeric values are
encoded in network byte order. Please note that firewalls built to these specifications will support all
RealAudio protocol versions numbered less than 256.

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 5

 Series of
Startup Messages Follow

Protocol Version
(2 bytes)

“PNA” string
(3 bytes)

The Player sends “PNA” hello string followed by protocol
version number and series of startup messages.Step 2

3. The listening Proxy identifies this action as a RealAudio request and responds accordingly. The Proxy
converts this connection into a pass-through control connection between the Proxy and the Player.

ProxyPlayer Server

Step 3

The Proxy intercepts the Player TCP connection on
port PPPORT. This becomes the Player-Proxy Pass-
Through Control Connection.

PPPORT RAPORT

4. The Proxy then opens a TCP connection to the RealAudio Server on TCP port RAPORT, using the IP
addressing in the TCP packets coming from the Player. This completes the TCP pass-through control
connection between the Player and the RealAudio Server using the Transparent Proxy.

ProxyPlayer Server

Step 4

The Proxy connects to the RealAudio Server
on the Server’s TCP Port, RAPORT

PPPORT RAPORT

5. The Proxy must detect and modify specific startup messages being passed over the pass-through control
connection. In particular, the Proxy must determine the type of connection (Standard UDP, Robust UDP,
or TCP-Only) requested.

ProxyProxyPlayerPlayer ServerServer

Step 5

The Player sends startup messages to the RealAudio Server.
The Proxy monitors and modifies messages as needed.

PPPORTPPPORT…4321 ◊◊ RAPORTRAPORT

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 6

6. Startup messages are formatted as tuplets made up of:

Message identifier (2 byte integer)
Byte length (n) of the message (2 byte integer)
Message (n bytes long)

All numeric values are encoded in network byte order as integers.

 Startup Message
(n bytes)

Message ID Number
(2 bytes)

Message Length
(2 bytes)Step 6

Proxy needs to check for the following startup messages sent by the Player:

ID 1 = UDP port request
ID 7 = Robust UDP
ID 0 = End of start up messages

All other startup messages should be ignored by the Proxy and passed to the RealAudio Server
unmodified.

Message ID 1 means that the Player is requesting either Standard UDP or Robust UDP audio delivery.
The message value contains the UDP port number on which the Player expects to receive the data stream.

Message ID 7 means that the Player is requesting Robust UDP audio delivery. The message value contains
the UDP port on the Player computer from which UDP resend requests will be sent.

Message ID 0 marks the end of the startup messages from the Player. The Player and Server continue to
communicate over the TCP Control Connection.

Depending on the messages received, follow the corresponding steps that follow:

Message ID 1 and Message ID 7 before Message ID 0: Robust UDP Connection
Message ID 1 before Message ID 0: Standard UDP Connection
Message ID 0 only: TCP-Only Connection

Note The Player may send other startup messages before Message ID 0; these messages should be
passed through unmodified to the Server.

TCP-Only Connection
7. The Proxy transfers every byte read from the Player on the TCP Control connection to the RealAudio

Server on its TCP control connection. The Proxy also transfers all data received from the RealAudio
Server to the Player.

ProxyPlayer Server

TCP 7

All data received by the Proxy from the
RealAudio Server is passed to the Player

PPPORT ⇓⇓ 5678…⇓⇓ 5678… RAPORT

All data received by the Proxy from the
Player is passed to the RealAudio Server

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 7

8. When either of the connections are closed, the other open connection in this Server - Proxy - Player
interaction should also be closed. This terminates the Player - Proxy interaction and the Server - Proxy
interaction.

Standard UDP Connection
The steps for the Standard UDP Connection also apply to a Robust UDP Connection. Additional steps for a Robust
UDP Connection are in the next section.

7. The Proxy transfers every byte read from the Player on the TCP control connection to the RealAudio
Server on its TCP control connection. The Proxy also transfers all data received from the RealAudio
Server to the Player.

8. After detecting the UDP request message (ID # 1) from the Player, the Proxy then reads the next two bytes
to determine the byte length of the UDP port value (always 2 bytes). The Proxy then reads two additional
bytes to obtain the requested UDP port number. This port is PLPORT.

ProxyPlayer Server

UDP 8

The Proxy scans the incoming data
from the Player and extracts PLPORT.

PPPORT…PLPORT65 4321 ◊◊ RAPORT

9. The Proxy allocates a new UDP port number to connect the Proxy to the Server. This is SVPORT.

10. The Proxy substitutes the Port number (PLPORT) extracted in step 8 with the new port number
(SVPORT) and passes the modified message to the RealAudio Server.

ProxyPlayer Server

UDP 10

The Proxy sends port SVPORT
 to the Server and saves PLPORT

PPPORT…78 ◊◊ SVPORT65 ◊◊

PLPORT

RAPORT

Note The Proxy should allow every byte sent from the Player, other than the 2 byte UDP port number,
to pass through unmodified.

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 8

11. The Proxy opens UDP port SVPORT to the RealAudio Server.

ProxyPlayer Server

UDP 11

The TCP control connections are
maintained throughout the session.

PPPORT

SVPORT

RAPORT

The Proxy opens UDP port SVPORT.

12. The Proxy connects to UDP port PLPORT on the Player.

ProxyPlayer Server

UDP 12
PPPORT

PLPORT

RAPORT

SVPORT

The Proxy connects to UDP
port PLPORT on the Player.

13. The Proxy passes all data received on UDP port SVPORT from the RealAudio Server to the Player on
UDP port PLPORT.

ProxyPlayer Server

UDP 13

Proxy receives audio
data on port SVPORT.

PPPORT RAPORT

SVPORTPLPORT

Proxy passes audio
data to port PLPORT.

14. If the Proxy detects Message ID 7 before Message ID 0, the Player is requesting a Robust UDP session.
Continue with the Robust UDP steps. Otherwise, the data connection between the Player and the
RealAudio Server using the Proxy is complete.

Note The Proxy should pass unmodified every byte sent through the UDP connection from the
RealAudio Server to the Player.

15. When any of the connections are closed all other open connections in this Server - Proxy - Player
interaction should also be closed. This terminates the Player - Proxy interaction and the Server - Proxy
interaction.

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 9

Robust UDP Connection
The Robust UDP Connection steps are a superset of the Standard UDP Connection Steps. For a Robust UDP
Connection, start with the steps in the previous section, and then continue with the steps in this section.

15. After detecting the Robust UDP request message (ID # 7) from the Player, the Proxy then reads the next
two bytes to determine the byte length of the UDP port value (always 2 bytes). The Proxy then reads two
additional bytes to obtain the UDP port number on the Player from which the Player sends UDP resend
requests to the Server. This port is PRPORT.

 UDP Port Number PRPORT
(2 byte integer)

Message ID 7
(0x0007)

Message Length
(0x0002)Robust

UDP 15

Note Port PRPORT can optionally be used to validate requests; otherwise the PRPORT value is not
needed by the Proxy. However, the Proxy does need to check for message ID 7 to know if Robust UDP is
requested by the Player, and modify it if it is found.

16. The Proxy allocates a new UDP port number to connect the Proxy to the Server. This is XSPORT.

ProxyPlayer Server

Robust
UDP 16 PPPORT RAPORT

SVPORTPLPORT

PRPORT XSPORT

Port from Player
Message ID 7

Select a new UDP
port

UDP

TCP

17. The Proxy substitutes the port number (PRPORT) extracted in step 15 with the new port number
(XSPORT) and passes the modified message to the RealAudio Server.

New UDP Port Number XSPORT
(2 byte integer)

Message ID 7
(0x0007)

Message Length
(0x0002)

Robust
UDP 17

18. The Proxy scans the messages sent from the RealAudio Server to the Player on the TCP Control
Connection. The Server first sends the Server Hello message.

The Server Hello message is always 9 bytes long, starting with "PNA" (0x504e41).

Robust
UDP 18

Server Hello Message - 9 Bytes

"PNA"
(0x504e41)

Protocol Version
(2 byte integer)

Hello Data
(4 bytes)

Immediately following the Server Hello message is Robust UDP response message from the Server.

Robust
UDP 18

Robust UDP Response - 10 Bytes

"O"
(0x4f)

Data Length
(0x08)

Player Request ID
(4 bytes)

Opcode 7
(0x0007)

Server Port SRPORT
(2 byte integer)

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 10

The Robust UDP Response message from the Server contains the port number on the Server to which the
Player sends UDP resend requests. This is port SRPORT. The Robust UDP Response message also
contains a 4-byte identifier that the Player uses in UDP resend requests to identify the source of the
request. This ID can optionally be used to validate resend requests from the Player.

If the Proxy does not receive the Robust UDP response message from the Server immediately following
the Server Hello message, the Server does not support Robust UDP. The Proxy should release the UDP
port XSPORT and continue the session as a Standard UDP connection.

19. The Proxy allocates a new UDP port number to connect the Player to the Proxy. This is XPPORT.

ProxyPlayer Server

Robust
UDP 19 PPPORT RAPORT

XPPORT SRPORT

SVPORTPLPORT

PRPORT XSPORT

Port from Server Robust
UDP ResponseSelect a new UDP port

UDP

TCP

20. The Proxy substitutes the Port number (SRPORT) extracted in step 18 with the new port number
(XPPORT) and passes the modified Robust UDP Response message to the RealAudio Player on the TCP
Control Connection.

21. The Proxy opens a UDP connection from XSPORT to SRPORT on the Server. The RealAudio Player
opens a UDP connection from PRPORT to XPPORT on the Proxy.

ProxyPlayer Server

Robust
UDP 21 PPPORT RAPORT

XPPORT SRPORT

SVPORTPLPORT

PRPORT XSPORT

Proxy connects to
Server port SRPORT

Player connects to
Proxy port XPPORT

UDP

TCP

UDP

22. The Proxy passes unmodified all bytes received from PRPORT on the Player to SRPORT on the Server.

23. When any of the connections are closed all other open connections in this Server - Proxy - Player
interaction should also be closed. This terminates the Player - Proxy interaction and the Server - Proxy
interaction.

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 11

Startup Message Definitions
Messages are encoded in a standard format. This allows unknown messages to be skipped over and ignored. The
standard format is as follows:

Table 1 - RealAudio Proxy Protocol Message Format

2 Bytes 2 Byte n Bytes (value of n = Message Length)
Message Identifier Message Length Optional Data

All numeric fields are in Network byte order. Data streams in the direction of the arrow.

Table 2 - RealAudio Handshake Proxy Protocol

Opcode Op Name Data Length
Bytes

Data Contents Purpose

0 End 0 (implied) Signals end of startup
messages.

1 UDP 2 UDP port number Specifies the Player UDP
port. If this message is not
sent, a TCP-Only session is
used.

7 Robust
UDP

2 UDP port number Requests a Robust UDP
session. Specifies the port
from which the Player sends
UDP resend requests.

The Proxy should ignore all other startup messages and pass them unmodified to the Server.

An example
The following are examples of startup messages. All numeric values are encoded in network byte order as integers.

The byte offset for the UDP port number will vary depending upon if other options are also being set. Following
are two sample connect messages for when error correction is turned on and off. The default setting is to have error
correction turned on. Please note that the Proxy should ignore all startup messages except those with identifiers of
0 (end messages) or 1 (UDP port request).

The handshake byte sequence with error correction turned on is as follows:

PNA050102nn00

Where
PNA is the three character identifier (3 byte string)
05 is the protocol version number (2 bytes)
01 is the identifier for the UDP port request (2 bytes)
02 is the byte length of the UDP request message (2 bytes)
nn is the actual UDP port number being requested (2 bytes)
00 is the identifier which signals the end of startup messages (2 bytes)

Note: There are no data length or data fields following the End Message identifier.

When error correction is turned off the sequence becomes:

Data Flow

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 12

PNA0502000102nn00

Where
PNA is the three character identifier (3 bytes)
05 is the protocol version number (2 bytes)
02 is the identifier to turn off error correction (2 bytes)
00 is the byte length of the error correction message (2 bytes)
01 is the identifier for the UDP port request (2 bytes)
02 is the byte length for UDP request message (2 bytes)
nn is the actual UDP port number being requested (2 bytes)
00 is the identifier which signals the end of startup messages (2 bytes)

Note: In this example the error correction message itself has zero byte length. The action of turning off error
correction is inferred from the option being sent. The default setting (used when this option is not sent) is to use
error correction.

The handshake byte sequence with error correction turned on and TCP-Only session:

PNA0500

Where
PNA is the three character identifier (3 byte string)
05 is the protocol version number (2 bytes)
00 is the identifier which signals the end of startup messages (2 bytes)

Pseudo Code of Player Proxy Interactions
The following section uses a C Style pseudo code to describe the operation of a Transparent Proxy during a firewall
interaction. All descriptions of messages refer to structured RealAudio Proxy Protocol messages. These messages
are defined in Table 2 - RealAudio Handshake Proxy Protocol.

//
// The assumption is that this code is called with
// the player already connected on a standard socket.
//
//
// OS/FW dependent call to determine server we
// really want to connect to. Gives us server/addr and port we
// should connect to.
//

OSDependentCall(server, port);

connect to server/port;
if failure {

close connections;
exit;

}

SetupDialog();
if failure {

close connections

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 13

exit;
}

do {
read tcp data from server => send data to player;
read tcp data from player => send data to server;
if (use_tcp == 0)

read udp data from server => send udp data to player;

} while (all tcp connections are open);

SetupDialog() {

read first 3 bytes of data from player; // (startup_string)
if (startup_string != "PNA") {

// log error?
return error;

}
write first 3 bytes of data to server; // (startup_string)

read 2 bytes from player; // (version)
if (version > 255) {

// log error?
return error;

}
write 2 bytes of data to server; // (version)

// assume tcp only until we determine otherwise
// case definitions: UDPBACKPORT = 1 , END = 0

use_tcp = 1;
done = 0;
do {

read 2 bytes option_code from player;
write 2 bytes option_code to server;

switch (option_code)
{

case UDPBACKPORT:
read 2 bytes option_length from player;

 write 2 bytes option_length to server;
 read 2 byte backport value from player;

stash backport;
// if we got a backport, then we want udp
use_tcp = 0;
// setup udp backport connection
udpsetup();
break;

case END:
done = 1;
break;

case default:
read option_info from player;
write option_info to server;
break;

}
} while (! done);

}

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 14

udpsetup()
{

open a udp port for listening to audio from server;
write 2 byte "new" port number to server;
setup/create info for sending udp info to player:backport;

}

